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The reactions of a pivalate-bridged paddle-wheel diruthe-
nium(II, III) complex, [Ru2II,III(piv)4(THF)2]BF4, with two kinds
of polyoxometalates (POMs), (TBA)2[Mo6O19] and (TBA)3[H3-
V10O28] (TBA: tetra-n-butylammonium cation), led to the
formation of one- and two-dimensional inorganic frameworks
composed of [­{Ru2}n­(POM)­]¹ repeating units with n = 1
and 2, respectively.

Polyoxometalates (POMs) are inorganic metaloxide clus-
ters, which provide various kinds of polygons composed of a
fragment of [­(M=O)­O­] containing terminal oxo groups (i.e.,
M=O) and bridging oxo groups (i.e., ®-oxo groups, M­O­M).
Owing to their characteristics such as structural diversity,
electronic-structural diversity, high redox activity, and relatively
high stability even in several oxidation states, POMs have
attracted much attention in fields such as catalysis,1­3 medi-
cine,4,5 and materials science.6­10 In particular in a view of
solid-state materials, POMs can be regarded as fragments of
metaloxides or minerals that are often categorized as strong-
correlated electronic systems. This point really motivates us
because assembling of POMs is a unique method to design
artificial strong-correlated electronic frameworks. Hence, our
idea is to assemble such versatile POMs with paramagnetic
metal ions or metal complexes to design functional inorganic
frameworks in a bottom-up method. Indeed, POMs act as
coordinating-donor building blocks, in which both of the
terminal oxo and ®-oxo groups can catch another metal ion to
assemble.11 Meanwhile, these oxo-sites have relatively weak
coordinating affinity, which are regarded as rather soft Lewis
bases. Hence, few cases are known in which POMs are
successfully assembled with coordinating-acceptor building
blocks to form inorganic frameworks.12

In order to design such frameworks, it is useful to use
Coulombic attraction between the precursors utilizing anionic
character of typical POMs in combination with cationic metal
complexes. Here, we chose carboxylate-bridged paddle-wheel
diruthenium(II, III) complexes (abbreviated henceforth as
[Ru2II,III]+) as a cationic coordinating-acceptor. [Ru2II,III]+ is a
useful building block to design multidimensional frameworks
assembling with coordinating-donor building blocks because of
its relatively high ability to accept coordination at the axial
positions resulting the construction of a paramagnetic linear
edge of frameworks with S = 3/2.13,14 The use of a pivalate-
bridged paddle-wheel diruthenium(II, III) complex, [Ru2II,III-
(piv)4(THF)2]BF4,15 in reactions with two kinds of POMs,
(TBA)2[Mo6O19]16 and (TBA)3[H3V10O28]16 (TBA: tetra-n-bu-
tylammonium cation), led successfully to the formation of one-
and two-dimensional inorganic frameworks composed of a
repeat of [­{Ru2}n­(POM)­]¹ with n = 1 and 2, respectively:

(TBA)[{Ru2(piv)4}{Mo6O19}]¢x(solv) (1) and (TBA)[{Ru2-
(piv)4}2{H3V10O28}]¢x(solv) (2). In this paper, structure and
magnetic properties of 1 and 2 are reported.

Compounds 1 and 2 were synthesized under aerobic
conditions by a slow diffusion of solutions containing the
precursors, [Ru2]BF4 and POM, in a solvent set of CH2Cl2
(bottom) and 1,2-dichloroethane (top), respectively (see Sup-
porting Information; SI21). Note that the solvents used were
reagent grade and were used without any further purification
(therefore, several water molecules were contained as crystal-
lization solvents in crystals of 2). The crystal samples are
relatively stable in air; keeping their crystallinity, although the
loss of several crystallization solvents is observed even at room
temperature (Figure S121).

ORTEP drawings of anionic parts of 1 and 2 are depicted in
Figures 1a and 2a, respectively. Compounds 1 and 2 crystallize
in the orthorhombic space group Pnma (#62) and the monoclinic
space group P2/c (#13), respectively, where a half of the
formula unit was determined as an asymmetric unit (Z = 4 and
2, respectively; see SI21).

Compound 1 contains one [Ru2]+ unit, where a mirror plane
bisects [Ru2]+ and the POM units. Two ®-oxo groups, which are
in a trans position of the Lindqvist [Mo6O19]2¹ POM, coordinate

a)

b) c)

Figure 1. ORTEP drawing of the chain of 1 (30% probability
ellipsoids; symmetry operation: *x, y, z + 1, **x, y, z ¹ 1) (a)
and packing diagrams projected along the b axis (b) and the c
axis (c), where three methyl groups of piv¹ were omitted for
clarity, and TBA cations were omitted in (b). The crystallization
solvents (solvs), are shown as gray layers in (b) and (c) to
represent the solvent columns.
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to the axial position of [Ru2]+ with a bond distance and an
angle of Ru(1)­O(12) = 2.269(5)¡ and Mo(2)­O(12)­Ru(1) =
121.87(13)°, forming a quasi-linear-type chain of [­{Ru2}­
POM­]¨, where O(12) consequently makes a ®3-oxo bridging
motif (Figures 1a and 1b). For the [Ru2] unit, the Ru­Ru bond
distance is 2.2652(7)¡, and the average Ru­Oeq (Oeq: carbox-

ylate oxygen) bond distance is 2.012¡, typical for [Ru2II,III]+

complexes.13,14,17 The chains run along the c axis of the unit cell,
which are alternately packed with TBA cations as if making a
layer along the b axis (noted as layer A in Figure 1c). This
virtual layer A is aligned as [£A£A£(solvs)£] along the a axis,
where “solvs” stands for another virtual layer made from
crystallization solvents of CH2Cl2 and 1,2-dichloroethane
(Figure 1c). The nearest interchain [Ru2] units are found in a
distance of 11.75¡.

Meanwhile, 2 consists of two [Ru2]+ units, one
[H3V10O28]3¹ POM, and one TBA cation. Each of the [Ru2]+

and [H3V10O28]3¹ units is related by the inversion centers; thus
the halves of those units are considered asymmetric units
(Figure 2a). The C2 axis was involved for TBA. One of [Ru2]+

units is coordinated with [H3V10O28]3¹ at the terminal oxo group
on V(2) ions with Ru(1)­O(11) = 2.228(5)¡ and Ru(1)­O(11)­
V(2) = 143.1(3)°, and another unit is, similarly to 1, bonded
at the ®-oxo group between V(1) and V(3) ions with Ru(2)­
O(3) = 2.283(4)¡, Ru(2)­O(3)­V(1) = 120.41(19)°, and Ru(2)­
O(3)­V(3) = 119.7(2)° (where O(3) is acting as a ®3-oxo group),
forming a rhombus-grid two-dimensional (2D) framework on
a (001) plane (Figure 2b). The Ru­Ru bond distances are
2.2752(6) and 2.2789(6)¡ for [Ru(1)2] and [Ru(2)2], respective-
ly, and the average Ru­Oeq distance is 2.017(5)¡, in agreement
with a case of [Ru2II,III]+ as well as the case in 1. Considering the
charge balance of this compound, the POM unit should be a
trianion with triprotonated form as [H3V10O28]3¹,18 although
three protons have not been assigned by X-ray crystallography.
As well as 1, 2 has a TBA cation, which is located between
the layers (Figure 2c). The nearest [Ru(1)2]£[Ru(2)2] distance is
10.09¡ (based on the midpoint of Ru­Ru).

To confirm the valence distribution of entities in 1 and 2,
magnetic susceptibilities were measured as a function of
temperature, as shown in Figure 3. The temperature dependence
of » and »T is very similar between 1 and 2; the »T values of
2.51 cm3Kmol¹1 for 1 and 4.22 cm3Kmol¹1 for 2 at 300K
continuously decreased to 1.47 and 2.60 cm3Kmol¹1 at 1.8K,

a)

b)

c)

Figure 2. ORTEP drawing of the framework of 2 (30%
probability ellipsoids; symmetry operation: #¹x + 1, ¹y + 2,
¹z + 1, ##¹x + 2, ¹y + 1, ¹z + 1, ###¹x + 1, ¹y + 1, ¹z + 1)
(a) and packing diagrams projected along the c axis (b) and the a
axis (c), where three methyl groups of piv¹ were omitted for
clarity, TBA cations were omitted in (b), and the crystallization
solvents (solvs) were omitted in (b) and (c).

Figure 3. Temperature dependence of » and »T of 1 (top) and
2 (bottom). The solid red lines represent the best fits using a
Curie paramagnetic model of S = 3/2 taking into account zero-
field splitting (D), temperature-independent paramagnetism
(»TIP), and intermolecular interactions (zJ); see the text.
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respectively, where the value of 2 is almost twice of that of 1
but should be attributed to identical paramagnetic species. Since
the POM units used in this study are expected to be diamagnetic,
the main contribution to the paramagnetic behavior is thus
attributed to [Ru2(piv)4]+ with S = 3/2. The » and »T values
were simulated in the entire temperature range by using a Curie
paramagnetic model with S = 3/2 involving zero-field splitting
(D), temperature-independent paramagnetism (»TIP), and inter-
molecular interactions (zJ) commonly used for magnetically
isolated or weakly interacting [Ru2II,III]+ complexes.14,17 zJ was
introduced in the framework of the mean-field approximation
(z: number of adjacent magnetic centers). The best parameters
were: g = 2.312(4), D/kB = 92(2)K, zJ/kB = ¹0.041(7)K, and
»TIP = 12(48) © 10¹6 cm3mol¹1 for 1 with R = 0.99952 and
g = 2.1338(7), D/kB = 103.2(5)K, zJ/kB = 0 (fix), and »TIP =
49(9) © 10¹6 cm3mol¹1 for 2 with R = 0.99989, where R =
1 ¹ ­(»Tcalc ¹ »Tobs)2/­(»Tobs)2 (fitted curves are displayed as
red lines in Figure 3). The obtained values of g, which are larger
than 2.00, and D are typical for [Ru2II,III]+.14,17 These magnetic
data concluded that the components of [Ru2]+ and POM are
assembled without virtual charge transfer between them and are
essentially isolated as the respective precursor units in a point of
charge distribution. The reflection spectra support this conclu-
sion; no unique charge-transfer band was observed in 1 and 2
(Figure S221).

In conclusion, inorganic 1D and 2D frameworks composed
of POMs linked with paddle-wheel [Ru2II,III]+ units were
synthesized based on [Mo6O19]2¹ and [H3V10O28]3¹, respective-
ly, where the POMs act as good coordinating-donor building
blocks using both terminal oxo and ®-oxo groups. POM-based
polymers are potentially the next targets for functional materials;
it would be desired that POM subunits are electronically
activated in frameworks, as well as found in the family of
[Ru2II,II]/organic acceptors.19,20 The present materials are liter-
ally topological candidates for such materials.
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